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Abstract. Power duality in Feynman’s path integral formulation of quantum

mechanics is investigated. The power duality transformation consists of a change

in coordinate and time variables, an exchange of energy and coupling, and a

classical angular momentum replacement. Two physical systems connected by the

transformation form a power-dual pair. The propagator (Feynman’s kernel) expressed

by Feynman’s path integral cannot be form-invariant under the transformation,

whereas the promotor constructed by modifying Feynman’s path integral is found form-

invariant insofar as the angular momentum is classical. Upon angular quantization, the

power duality breaks down. To save the notion of power duality, the idea of quasi power

duality is proposed, which constitutes of an ad hoc angular momentum replacement.

The power-dual invariant promotor leads to the quasi-dual invariant Green function.

A formula is proposed, which determines the Green function for one of a dual pair by

knowing the Green function for the other. As examples, the Coulomb-Hooke dual pair

and a family of two-term confinement potentials for a zero-energy state are discussed.

1. Introduction

In an earlier article [1], we have studied the duality between two power force laws (power

duality in short) in classical, semiclassical and quantum mechanics. In the present

paper, we wish to investigate the power duality in Feynman’s path integral formulation

of quantum mechanics [2, 3, 4].

In recent years, numerous exoplanets have been discovered [5]. It is a generally

accepted view that Newton’s law of gravitation holds in extrasolar systems. Orbital



Power-Duality in Path Integral Formulation of Quantum Mechanics 2

mechanics of exoplanets, as is in the case of solar planets and satellites, mainly deals

with the Kepler problem with perturbation. The common procedure for studying

perturbations to the Kepler orbit is the so-called regularization, introduced by Levi-

Civita [6] and generalized by Kustaanheimo and Stiefel [7]. The regularization is a way

to transform the singular Kepler motion to the non-singular Hooke motion. There are

many ways to convert Newton’s law to Hooke’s law via various transformations of real

numbers, complex numbers, spinors, quaternions, hypercomplex numbers and so on. See

references [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. These efforts on regularization is indeed

all based on recognition of the dual relation between Newton’s law and Hooke’s law.

In the above, by Newton’s law we mean the inverse-square force law and by Hooke’s

law the linear force law, despite some arguments among historians that Hooke knew

the inverse-square force for the Kepler motion prior to Newton’s Principia (see, e.g.,

[19, 20]).

Duality between the inverse-square force law and the linear force law seems to have

been known to Newton and Hooke. According to Chandrasekhar’s reading [9] out of

propositions and corollaries in Principia, Newton had even established duality between

the centripetal forces of the form ra and rb for various pairs (a, b). The power-law duality

for arbitrary power forces in classical mechanics was analyzed by Kasner [13], Arnol’d

[8], and others [14, 15, 16]. In our previous work [1] we expanded the domain of the

dual pairs.

In quantum mechanics, the classical Newton-Hooke duality corresponds to the

dual relation between the Coulomb system and the harmonic oscillator. Schrödinger

[21, 22] initially solved his wave equation for the hydrogen atom and the harmonic

oscillator separately, and later found a transformation connecting the two systems [23].

Schrödinger’s equation for arbitrary power potentials was extensively studied by Johnson

[24] and others [25, 26]. Application to the confinement problem was discussed by Quigg

and Rosner [27], Gazeau [25] and Steiner [28]. Supersymmetric aspects of the Coulomb-

Hooke dual relation in arbitrary dimensions are also discussed by Kostelelecký et al. [29],

see also [30]. It is interesting to mention that such power-laws appear to play useful

roles in the Anderson localization of low-dimensional disordered systems [31, 32].

Feynman’s path integral approach to quantum mechanics is successful in solving

the quadratic potential problems, but fails to produce the solution for the hydrogen

atom which once symbolized the success of Schrödinger’s wave equation. However, if

the action of the form of Hamilton’s principal function in Feynman’s path integral is

replaced by that of Hamilton’s characteristic function, then one can get a help from

the Coulomb-Hooke duality to solve the modified path integral for the hydrogen atom

[33, 34, 35, 36]. Under the influence of the duality idea, the connection between the path

integral approach and the dynamical group approach was also clarified [37]. Such studies

motivate us to investigate the power duality in path integration by asking whether

the power duality is a valid symmetry or a broken symmetry; what quantities remain

invariant if valid; how breaking occurs if broken; what benefits can be gained altogether.

For a more detailed review of the historical backgrounds of the power duality see [1].
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Power duality is a relation between two objects in motion holding fixed values of

energy E and angular momentum L under the influence of the central power force law.

The central potential due to the power force law is in general of the form,

Va(r) = λar
a + λa′r

a′ + λa′′r
a′′ + · · ·+ λa(M)ra

(M)

(1)

where λa is the coupling constant associate with ra = |r|a, the a-th power of the

magnitude of a position vector r ∈ RD, and so on. We treat the first term as the

primary potential and the remaining terms as the secondary potential. In the present

work, we consider mainly the two-term potential (M = 2) with non-vanishing coupling

constants λa and λa′ . There is a set of reversible operations, called the power-duality

transformation and denoted by ∆, that takes a system with a power potential to

another system with a different power potential. The power-duality transformation of

the primary potential induces the changes in the secondary potential. Suppose system

A and system B are connected by ∆, with

Vb(ρ) = λbρ
b + λb′ρ

b′ + λa′′ρ
b′′ + · · ·+ λb(M)ρb

(M)

. (2)

Then we say, the two systems are power-dual to each other. The power-duality

transformation ∆(R, dT,L,E,S) consists of the following reversible operations,

• Power transformation: ra → ρb; that is,

R : r = f(ρ) = Cρη, (3)

where η = −b/a with (a+ 2)(b+ 2) = 4,

and C is a real constant having a dimension of ρ1−η.

• Non-integrable time transformation: dt→ ds; or more specifically,

dT : dt = C2η2ρ2η−2ds. (4)

• Angular momentum transformation: La → Lb; that is,

L : Lb = |η|La. (5)

• Energy-coupling swapping: Ea → λb, λa → Eb; that is,

E : Eb = −η2Ca+2λa, λb = −η2C2Ea . (6)

• Change in the secondary potential: λa(i) → λb(i) ,

S : λb(i) =

(
2

a+ 2

)2

Ca(i)+2λa(i) , b(i) =
2(a(i) − a)

a+ 2
, (7)

where i = 1, 2, 3, ...,M .

Being more explicit [1], let

W (a) =

∫
dt

[
m

2

(
dr

dt

)2

− L2
a

2mr2
− Va(r) + Ea

]
(8)
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be Hamilton’s radial characteristic function associated with central potential (1) for

given angular momentum La and energy Ea. Then above power-duality transformation

∆ maps Wa → Wb, where

W (b) =

∫
ds

[
m

2

(
dρ

ds

)2

− L2
b

2mρ2
− Vb(ρ) + Eb

]
(9)

is Hamilton’s radial characteristic function associated with central potential (2). A brief

historical review on power duality is given in reference [1].

Suppose quantities QA(a, a
′) and QB(b, b

′) belong to system A and system B,

respectively. Suppose QA(a, a
′) is taken to QB(b, b

′) by ∆, that is, QA(a, a
′) = QB(b, b

′)

via ∆. Then we also say that QA(a, a
′) and QB(b, b

′) are power-dual to each other. Let

X(a, b) be an operation which exchanges the parameters (a, a′) and (b, b′). If QB(b, b
′)

returns to QA(a, a
′) under X(a, b), that is, if X(a, b)QB(b, b

′) = QB(a, a
′) = QA(a, a

′),

then we say that QA(a, a
′) is dual-form invariant under ∆ and that QA(a, a

′) and

QB(b, b
′) are symmetric with respect to ∆.

In classical mechanics, as was observed in the previous work [1], the power-duality

transformation ∆ takes the action function of a power potential system to the action

function of another power potential system. Since the path integral is based on the

classical action, it is reasonable to expect that the power duality would be compatible

with the path integral. However, we have to recognize that path integration is a

non-trivial calculation which has been explicitly carried out only for a limited class

of potential systems. Standard books on path integration [3, 4] mostly deal with

quadratic systems on rectangular coordinates. For the power duality argument, it is

necessary to prepare the polar coordinate formulation of the path integral. Furthermore,

we have to modify Feynman’s path integral by taking the following important points

into account. The action function treated in classical mechanics was Hamilton’s

characteristic function, whereas the action appearing in Feynman’s path integral is

of the form of Hamilton’s principal function. Therefore, we have to modify the path

integral so as to be based on the action in the form of Hamilton’s characteristic function.

Corresponding to the propagator (Feynman’s kernel) represented by Feynman’s path

integral, we introduce a novel object called the promotor represented by the modified

path integral. By doing so, we are able to explore the power duality of the path

integral formulation of quantum mechanics, at least formally, along the same line of

thought as in the case of classical mechanics. We examine power-dual actions, path

integrals, promotors, and Green functions. As is pointed out in reference [1], we find

that the power duality is essentially a classical notion and that it breaks down upon

angular quantization. By making a semiclassical Langer-like modification of angular

quantization, we propose the partially-broken power-duality idea to utilize in carrying

out path integration for certain potential systems.

In Section 2, we define the path integral for the promotor and clarify the relations

of the promotor to the propagator and the Green function. Then we formulate the path

integral in polar coordinates in a compact form and separate angular parts to extract
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the radial path integral for the power-duality consideration. We begin Section 3 by

applying the space-time transformation to the radial path integral in Feynman’s time

slicing procedure. The full power-duality transformation ∆ is also carefully applied to

construct the power-dual pair of radial path integrals. Insofar as the radial promotor is

characterized by a classical angular momentum L, the path integral for the promotor is

power-dual form invariant. As soon as the angular momentum is quantized, the power

duality breaks down on the path integral for the promotor because L cannot preserve

the integral property of angular momentum quantum number ℓ. This means that power

duality is basically a classical notion. Nonetheless, there is a way to modify the classical

notion so as to be useful as a tool in quantum mechanics. While L implies the equality

La = |η|−1Lb which breaks down upon quantization, we propose an ad hoc replacement,

Lℓ: ℓ+ (D − 2)/2 → |η|{ℓ+ (D − 2)/2} (10)

with ℓ ∈ N0. We call this modified version of partially broken power-duality the quasi-

power-duality. Utilizing the modified version, we are able to obtain a quasi-power-dual

formula for the Green functions which is similar to the one derived from the Schrödinger

equation by Johnson [24]. Section 4 deals with the power-dual pair of the hydrogen-like

atom and the radial oscillator, and a family of confinement models as examples. A brief

summary is given in Section 5.

2. Path Integral for the Promotor

In this section, introducing an entity called promotor, we study the path integral for

the promotor. First we show how the promotor is related to the propagator (Feynman

kernel) and the energy-dependent Green function. Then we present the polar coordinate

formulation of the path integral. In particular, in order to be ready for investigating the

power duality, we prepare the radial path integral by following Feynman’s time slicing

procedure.

2.1. Propagator, Green Function and Promotor

The time-dependent quantum state evolves as |ψ(t′′)⟩ = U(t′′, t′)|ψ(t′)⟩ where U(t′′, t′)

is the time-evolution operator. Since we are interested in a system whose Hamiltonian

H is not explicitly dependent on time t, the evolution operator can be given by

U(t′′, t′) = e−
i
ℏ (t

′′−t′)H . In the r-representation, the forward evolution equation for t′′ > t′

takes the form,

ψ(r′′, t′′) =

∫
dr′K(r′′, r′; t′′, t′)ψ(r′, t′). (11)

where ψ(r, t) = ⟨r|ψ(t)⟩ and

K(r′′, r′; t′′, t′) = ⟨r′′|e−
i
ℏ (t

′′−t′)H |r′⟩ (t′′ > t′). (12)

As is defined by (12), K(r′′, r′; t′′, t′) is the transition amplitude of the system from

position r′ at time t′ to position r′′ at time t′′. In (11), it may be seen as the propagator
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that propagates quantum waves. It may as well be the kernel of the integral equation

(11) and equivalently it is the retarded Green function (t′′ > t′) for the time-dependent

Schrödinger equation, (H − iℏ ∂
∂t
)ψ(r, t) = 0. As Feynman asserted, the propagator can

be evaluated by Feynman’s path integral,

K(r′′, r′; τ) = ⟨r′′|e−
i
ℏHτ |r′⟩ =

∫ r′′=r(t′′)

r′=r(t′)

D[r(t)] e
i
ℏS[r(t)] (13)

where τ = t′′ − t′ > 0 is the time interval of motion and S[r(t)] is the c-number action

of the system in the form of Hamilton’s principal function. Now on, the multi-faced

function K(r′′, r′; t′′, t′) will be simply referred to as the propagator.

The energy Green function G(r′′, r′;E) = ⟨r′′|(E − H)−1|r′⟩ for the stationary

Schrödinger equation, (H − E)ψ(r) = 0, is obtainable from the propagator (13) by

a Laplace transformation as

G(r′′, r′;E) =
1

iℏ

∫ ∞

0

dτ K(r′′, r′; τ) e
i
ℏEτ , ImE > 0 , (14)

by assuming that the energy parameter E contains a small positive imaginary part

ImE > 0. Alternatively, we can express the energy Green function as

G(r′′, r′;E) =
1

iℏ

∫ ∞

0

dτ P (r′′, r′; τ) (15)

by introducing the object which we call the promotor [38],

P (r′′, r′; t′′ − t′) = ⟨r′′|e−
i
ℏ (H−E)(t′′−t′)|r′⟩ , t′′ > t′ . (16)

The promotor P (r′′, r′; τ) defined by (16) does not propagate waves; it does not serve

as a kernel. But it helps our duality argument as well as the calculation of the energy

Green function (15).

Despite their difference in role, there is a similarity between the propagator and the

promotor. When the propagator is for a system with the Hamiltonian H, the promotor

may formally be viewed as the propagator for a system with a shifted Hamiltonian

H̄ = H −E. Therefore, it is obvious that the promotor can be evaluated by Feynman’s

path integral of the form,

P (r′′, r′; τ) =

∫ r′′=r(t′′)

r′=r(t′)

D[r(t)] e
i
ℏW [r(t)] (17)

where Hamilton’s principal function S[r(t)] in (13) is replaced by a modified action,

W [r(t)] = S[r(t)] + Eτ , having the form of Hamilton’s characteristic function.

In classical mechanics, as shown in reference [1], the radial action W [r(t)] is dual-

form invariant under the power-dual transformation ∆. For the study of power duality

in the path integral formulation of quantum mechanics, it is reasonable to choose the

promotor in the modified path integral form (17) rather than Feynman’s original path

integral (13) since the key constituent of the promotor path integral is W [r(t)] while

Feynman’s path integral depends on S[r(t)]. Thus we investigate the power duality of

the action W [r(t)] in the promotor.
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If the action W [r(t)] is invariant under the set of operations, {∆, X(b, a)}, then the

power duality of the promotor appears to be rather obvious. However, in applying ∆ to

the path integral (17), we encounter a number of problems to be resolved. For instance,

(i) the separation of the radial component from the angular parts, which is vital for the

transformation of the radial variable, is not trivial in a path integral, (ii) the change of

variables is not a straightforward matter in a path integral, and (iii) the action in a path

integral is not necessarily defined along the classical paths; it covers all possible histories,

so that the formal implementation of the non-integrable time transformation dT of (4)

in a path integral is not warranted. To resolve these problems, we have to look into the

detailed structure of the path integral for the promotor. In fact, the path integral given

in (17) is still symbolic, whose implication has to be spelled out for computation.

It is clear from the properties of the evolution operator U(t′′, t′) = e−
i
ℏ H̄(t′′−t′) that

the promotor defined by (16) obeys, just as the propagator of (12) does, the Kolmogorov-

Chapman relation,

P (r′′, r′; t′′ − t′) =

∫
RD

dDrP (r′′, r; t′′ − t)P (r, r′; t− t′) (18)

and the normalisation condition,

lim
τ→0

P (r′′, r′; τ) = δ(D)(r′′ − r′). (19)

Here, we have assumed that the space is Cartesian in D dimensions. Replacing the

D-dimensional integration of (18) by a star symbol ∗, we may interpret the Kolmogorov-

Chapman relation (18) as the ∗ composition of a compatible pair of promotors; namely,

P (r′′, r′; t′′ − t′) = P (r′′, r; t′′ − t) ∗ P (r, r′; t− t′). (20)

We regard two promotors P1(t, t1) and P2(t2, t) as a compatible pair since the final time

of P1 coincides with the initial time of P2. Only a compatible pair of promotors are

composable by the ∗ product.

Now, we follow Feynman’s time slicing procedure [2] by dividing the time interval

τ = t′′−t′ intoN short time subintervals τj in such a way that τj ∼ τ/N and τ =
∑N

j=1 τj,

where j = 1, 2, 3, ...N , τj = tj − tj−1 > 0, t′ = t0, and t
′′ = tN . We also let rj = r(tj),

r′ = r(t′) and r′′ = r(t′′). Repeating use of the Kolmogorov-Chapman relation (18), we

may write the promotor as a multiple composition of short-time promotors P (rj, rj−1; τj)

defined for short time intervals τj,

P (r′′, r′; τ) = lim
N→∞

∫ N−1∏
j=1

dDrj

N∏
j=1

P (rj, rj−1; τj) (21)

or

P (r′′, r′; τ) = lim
N→∞

N∏
j=1

∗P (rj, rj−1; τj). (22)

In addition, the short time promotor is assumed to be

P (rj, rj−1; τj) = Nj exp

[
i

ℏ
W (rj, rj−1; τj)

]
(23)
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where W (rj, rj−1; τj) is the short time action defined along a classical path, and Nj is a

prefactor so chosen that the normalisation condition (19) is met.

The promotor given by (21) and the short time promotor defined by (23) constitute

the time-slicing procedure of the path integral formally presented in (17). This provides

us a way to evaluate the path integral explicitly.

For the Lagrangian L(r, ṙ) of a particle of massmmoving in a central force potential

V (r), the short time action is given by

W (rj, rj−1; τj) =

∫ tj

tj−1

dt {L(r, ṙ) + E} =
m

2τj
(∆rj)

2 − V (rj)τj + Eτj , (24)

where ∆rj = rj − rj−1 and rj = |rj|. The normalisation factor can be easily determined

by using (19), (23) and (24); namely,

Nj =

[
m

2πiℏτj

]D/2

. (25)

In Feynman’s construction [2, 3, 4] of a path integral, the short time action is defined

along a classical path. Hence the infinitesimal time transformation dT is applicable

to the short time promotor if it is properly replaced by an approximate short time

transformation δT. The detail of this replacement will be discussed later.

2.2. Path Integral in Polar Coordinates

In order to perform R of (3) that transform the radial variable, we have to express

the promotor in spherical polar coordinates, say, (r, θ(1), θ(2), · · · , θ(D−1)), and extract its

radial components out of the path integral. The polar coordinate formulation of the path

integral can be found in the literature [39, 40]. However, since it is not straightforward

to move from the cartesian coordinates to the polar coordinates in a path integral as

compared with the case of the Schrödinger equation, we shall briefly describe in the

following the procedure to separate the radial promotor from the D dimensional path

integral. Details are presented in Appendix A.

Introducing the D dimensional unit vector, u = r/r ∈ RD indicating a point on

the unit hypersphere SD−1 ⊂ RD we obtain for the short time promotor (23) following

partial wave expansion

P (rj, rj−1; τj) =
∞∑

ℓj=0

Pℓj(rj, rj−1; τj) C(D−2)/2
ℓj

(uj · uj−1) , (26)

where Pℓj(rj, rj−1; τj) is the short time radial promotor of the ℓj-wave having the form,

Pℓj(rj, rj−1; τj) =
m

iℏτj
r̂
−(D−2)
j exp

{
im

2ℏτj
(r2j + r2j−1)−

iτj
ℏ
Uj

}
Iℓj+(D−2)/2

(
mr̂2j
iℏτj

)
(27)

with r̂2j = rjrj−1 and Uj = U(rj) where U(r) is the modified potential U(r) = V (r)−E.

In the above C(D−2)/2
ℓ (u · u′) is the modified Gegenbauer polynomial defined in (A.8)

and obeys the orthonormality relation∫
dD−1Ω(u) C(D−2)/2

ℓ′′ (u′′ · u) C(D−2)/2
ℓ′ (u · u′) = δℓ′ℓ′′ C(D−2)/2

ℓ′ (u′′ · u′). (28)
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Now, substituting the short time promotor of the form (26) into (21), we can easily

carry out the angular integrations by utilizing the property (28) successively to arrive

at the finite time promotor expanded in partial wave series,

P (r′′, r′; τ) =
∞∑
ℓ=0

Pℓ(r
′′, r′; τ) C(D−2)/2

ℓ (u′′ · u′), (29)

with the radial promotor to be determined by path integration,

Pℓ(r
′′, r′; τ) = lim

N→∞

∫ N−1∏
j=1

rD−1
j drj

N∏
j=1

Pℓ(rj, rj−1; τj). (30)

2.3. Path Integral for the Radial Promotor

The angular integrations have been completed. However, the radial integrations in (30)

remain so far untouched. In fact, the path integral for the radial propagator has been

calculated only for a limited class of potentials including the free particle [47], the radial

harmonic oscillator [39], and the hydrogen-like atom [34, 35, 36]. For a general power

potential V (r) = rn with n ̸= −1, 0, 2, the radial path integration has not been carried

out. Regardless of whether exact treatments are available or not, we are able to discuss

the power duality in the radial path integral.

As justified in Appendix B we can utilise the asymptotic expression of the modified

Bessel function for large arguments to approximate the short time radial promotor as

follows (the symbol
.
= indicates equality within this short time approximation)

Pℓ(rj, rj−1; τj)
.
=

(
m

2πiℏτj

)1/2

r̂
−(D−1)
j exp

{
i

ℏ
W (rj, rj−1; τj)

}
(31)

with the short time radial classical action,

W (rj, rj−1, τj) =
m

2τj
(∆rj)

2 −
(
L2 − 1

4

)
ℏ2

2mr̂2j
τj − U(r̂j)τj (32)

where

L = ℓ+
D − 2

2
, ℓ = 0, 1, 2, . . . . (33)

Although quantum fluctuation does not only consist of classical paths, in Feynman’s

time-slicing treatment, motion in a short time is assumed to be along a classical path.

Hence the radial action (32) is considered as a classical action only when τj is very small,

and comparable to the classical action used in reference [1] . It must also be understood

that V (rj)
.
= V (r̂j)

.
= V (r̄j) in the short time action because all terms of O(τ

3/2
j ) or

higher can be ignored. Hence Uj = U(rj)
.
= U(r̂j)

.
= U(r̄j), where r̂j =

√
rjrj−1 and

r̄j = (rj + rj−1)/2 are the geometric and arithmetic means, respectively.

Here we also note that the measure in the radial integral of (30) can be rearranged

as
N−1∏
j=1

rD−1
j drj = (r0rN)

−(D−1)/2

N∏
j=1

r̂D−1
j

N−1∏
j=1

drj. (34)
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Substitution of the short time radial promotor (31) and the rearranged measure (34)

into the path integral (30) enables us to write the D-dimensional radial promotor (30)

as

Pℓ(r
′′, r′; τ) = (r′r′′)−(D−1)/2Pℓ(r

′′, r′; τ) (35)

with the one-dimensional radial promotor,

Pℓ(r
′′, r′; τ) = lim

N→∞

∫ N−1∏
j=1

drj

N∏
j=1

[
m

2πiℏτj

]1/2 N∏
j=1

exp

{
i

ℏ
W (rj, rj−1; τj)

}
, (36)

where W (rj, rj−1; τj) is the short time action given in (32). While the radial promotor

Pℓ(r
′′, r′; τ) has been given by (31) as a radial path integral with the measure

∏
rD−1
j drj,

the radial promotor Pℓ(r
′′, r′; τ) of (36) is given by the one-dimensional radial path

integral with the measure
∏

drj. The path integral representation for the one-

dimensional promotor in (36) is indeed based on the properties,

Pℓ(r
′′, r′; t′′ − t′) =

∫
R+

drPℓ(r
′′, r; t′′ − t)Pℓ(r, r

′; t− t′) (37)

and

lim
τ→0

Pℓ(r
′′, r′; τ) = δ(r′′ − r′). (38)

It is this one-dimensional radial path integral that we wish to study for the power

duality.

The Green function (15) may as well be expanded in the partial wave series.

Integrating both sides of (29) over τ yields

G(r′′, r′;E) =
∞∑
ℓ=0

Gℓ(r
′′, r′;E) C(D−2)/2

ℓ (u′′ · u′) (39)

with the radial component defined in D-dimensional space,

Gℓ(r
′′, r′;E) =

1

iℏ

∫ ∞

0

dτ Pℓ(r
′′, r′; τ). (40)

The one-dimensional radial Green function corresponding to the one-dimensional radial

promotor may be defined by

Gℓ(r
′′, r′;E) =

1

iℏ

∫ ∞

0

dτ Pℓ(r
′′, r′; τ) (41)

which satisfies

Gℓ(r
′′, r′;E) = (r′r′′)−(D−1)/2Gℓ(r

′′, r′;E). (42)

3. Power Duality

Here we wish to investigate the power duality on the radial path integral for the

promotor. First, we consider the space and time transformations applied to a system

with a central force potential. Then, restricting ourselves to a two-term power potential,

we examine the transformation properties of the promotor and the Green function by

applying the full power-duality transformation ∆.
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3.1. Space and Time Transformations

First we implement the transformation of radial variable, R, and the time

transformation, dT, in the path integral for the one-dimensional radial promotor (36).

Let system A be the system described in terms of space time variables (r, t) and system

B be the system in variables (ρ, s). In transforming a variable to another in the short

time action, we have to exercise caution. For small ε, the following relations hold true

[37], ∫ ∞

−∞
dx exp

{
−α
ε
x2 + βx2

}
=

∫ ∞

−∞
dx exp

{
−α
ε
x2 +

β

2α
ε+O(ε2)

}
, (43)∫ ∞

−∞
dx exp

{
−α
ε
x2 +

γ

ε
x3
}
=

∫ ∞

−∞
dx exp

{
−α
ε
x2 +O(ε2)

}
, (44)∫ ∞

−∞
dx exp

{
−α
ε
x2 +

δ

ε
x4
}

=

∫ ∞

−∞
dx exp

{
−α
ε
x2 +

3δ

4α
ε+O(ε2)

}
, (45)

where α, β, γ and δ are constants, and Reα > 0. Applying these relations to the short

time action with ε = τj and x = ∆qj for any real variable and recalling that the short

time action neglects any terms of O(τnj ) for n > 1, we obtain the following approximate

relations,

β(∆qj)
2 .
=

β

2α
τj ,

γ

τj
(∆qj)

3 .
= 0 ,

δ

τj
(∆qj)

4 .
=

3δ

4α2
τj , (46)

which suggest that (∆qj)
2 ∼ τj, and that the terms of (∆qj)

3/τj are negligible in the

path integral and the terms of (∆qj)
4/τj are not ignorable. Naturally, all those terms

containing (∆qj)
n/τj for n > 4 may be neglected.

Taking these points into account, we change each radial variable from rj to ρj by

the space transformation

Rf : r → ρ by r = f(ρ) (47)

where f(ρ) is invertible and many times differentiable. Let fj = f(ρj) and f
′
j = f ′(ρj)

with f ′ = df/dρ, etc. To treat two space points ρj and ρj−1 symmetrically, we expand

fj and fj−1 as power series in ∆ρj, and express ∆fj = fj − fj−1 in two possible ways;

∆fj = f ′
j−1(∆ρj) +

1

2!
f ′′
j−1(∆ρj)

2 +
1

3!
f ′′′
j−1(∆ρj)

3 + · · · (48)

and

∆fj = f ′
j(∆ρj)−

1

2!
f ′′
j (∆ρj)

2 +
1

3!
f ′′′
j (∆ρj)

3 − · · · (49)

Combining (48) and (49) we obtain

(∆fj)
2 .
= f ′

jf
′
j−1(∆ρj)

2 +
1

2!

{
f ′
jf

′′
j−1 − f ′′

j f
′
j−1

}
(∆ρj)

3

+
1

3!

{
f ′
jf

′′′
j−1 + f ′′′

j f
′
j−1

}
(∆ρj)

4 − 1

2!2!
f ′′
j f

′′
j−1(∆ρj)

4. (50)

In the above, we have ignored those terms containing (∆ρj)
n with n > 4. However, if

we hastily use the approximate relations of (46) at this point, we will miss an important
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contribution from the term of (∆ρj)
3. Since the leading term of (50) depends on the

mean square value of f ′
j, we have to proceed our calculation consistently by using the

mean square values of derivatives,

f̂ ′
j =

√
f ′
jf

′
j−1 f̂ ′′

j =
√
f ′′
j f

′′
j−1 , f̂ ′′′

j =
√
f ′′′
j f

′′′
j−1 .

For conversion to the mean square values, we notice that

ρj = ρj−1 +∆ρj , f ′
j = f ′(ρj) = f ′

j−1 + f ′′
j−1∆ρj +O((∆ρj)

2) ,

f ′
j−1 = f ′

j − f ′′
j ∆ρj +O((∆ρj)

2) , f̂ ′
j = f ′

j{1− 1
2
(f ′′

j /f
′
j)∆ρj +O((∆ρj)

2)},

etc., and that

f ′
jf

′′
j−1 = f ′

j−1f
′′
j + (f ′′

j f
′′
j−1 − f ′′′

j f
′
j−1)∆ρj +O((∆ρj)

2)

and

f
(m)
j f

(n)
j−1 = f̂

(m)
j f̂

(n)
j {1−O(∆ρj)}.

Then we rewrite the second and third terms on the right hand side of (50) as

1

2

{
f ′
jf

′′
j−1 − f ′′

j f
′
j−1

}
(∆ρj)

3 .
=

1

2

{
(f̂ ′′

j )
2 − f̂ ′

j f̂
′′′
j

}
(∆ρj)

4 (51)

and
1

6
(f ′

jf
′′′
j−1 + f ′

j−1f
′′′
j )(∆ρj)

4 .
=

1

3
f̂ ′
j f̂

′′′
j (∆ρj)

4. (52)

Surprising though it is, the term of (∆ρj)
3 in (50) turns out to be of order (∆ρj)

4 on the

bases of mean square values. Substituting the results of (51) and (52) into (50) yields

(∆rj)
2 = (∆fj)

2 = (f̂ ′
j)

2(∆ρj)
2 +

1

6
(f̂ ′

j)
2Ŝ[f̂j](∆ρj)4 (53)

where

Ŝ[f̂j] =
f̂ ′′′
j

f̂ ′
j

− 3

2

(
f̂ ′′
j

f̂ ′
j

)2

. (54)

Here Ŝ[f̂j] is similar in form to but different in general from the Schwarz derivative

(Sf)(ρ̂j). However, as f̂
(n)
j = f (n)(ρ̂j){1 + O(∆ρj)}, where ρ̂j =

√
ρjρj−1, we may

identify (54) with the usual Schwarz derivative (Sf)(ρ). That is,

Ŝ[f̂j]
.
= (Sf)(ρ̂j) =

f ′′′(ρ̂j)

f ′(ρ̂j)
− 3

2

(
f ′′(ρ̂j)

f ′(ρ̂j)

)2

. (55)

By the change of variable rj = f(ρj), the short time action W (a)(rj, rj−1; τj) in (32)

is transformed to

W (b)(ρj, ρj−1; τj) =
m

2τj
(f̂ ′

j)
2(∆ρj)

2 +

(
L2 − 1

4

)
ℏ2

2mf̂ 2
j

τj − Vc(f̂j)τj − U(f̂j)τj (56)

where

Vc(f̂j)τj = − m

12τj
(f̂ ′

j)
2Ŝ[f̂j](∆ρj)4. (57)
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The extra potential (57) is the non-ignorable contribution from the terms of (∆ρj)
4 in

(53). Bringing the action (56) into the time-sliced promotor, we now employ the second

approximate relation in (46) to convert Vc(f̂j) of (57) into the form,

Vc(f̂j) = − Ŝ[f̂j]ℏ2

4m(f̂ ′
j)

2
(58)

which may be interpreted, being Vc ∼ ℏ2, as a quantum correction.

Correspondingly, the measure of the one-dimensional radial path integral (36)

undergoes the change,
N−1∏
j=1

drj = (f ′
0f

′
N)

−1/2

N∏
j=1

f̂ ′
j

N−1∏
j=1

dρj. (59)

Next we consider the time transformation applied to the short time action (56)

with the correction potential of (58). The time transformation dT in Section 1 may be

written in the form dTg : dt = g(ρ)ds. As the short time version of the infinitesimal

time transformation dTg, we employ the invertible short time transformation

δTg : τj = ĝjσj , j = 1, 2, 3, ..., N, (60)

where τj = tj − tj−1 and σj = sj − sj−1 are assumed to be small. Note that (60)

does not stipulate how to transform the finite time interval τ =
∑

j τj = t′′ − t′ to the

corresponding interval σ =
∑

j σj = s′′ − s′. Implementing δTg on the action (56), we

obtain the short time action,

W (b)(ρj, ρj−1;σj) =
m

2σj

(f̂ ′
j)

2

ĝj
(∆ρj)

2 +
ĝj
(
L2 − 1

4

)
ℏ2

2mf̂ 2
j

σj − ĝjVc(f̂j)σj − ĝjU(f̂j)σj . (61)

Again, as has been argued in [1], in order to keep the form of the kinetic term in (61)

unchanged, we choose ĝj = (f̂ ′
j)

2 = f ′(ρj)f
′(ρj−1). Accordingly, (60) reads

δTf : τj = (f̂ ′
j)

2σj. (62)

Under δTf , the action (61) goes over to

W (b)(ρj, ρj−1;σj) =
m

2σj
(∆ρj)

2+
(f̂ ′

j)
2
(
L2 − 1

4

)
ℏ2

2mf̂ 2
j

σj − (f̂ ′
j)

2Vc(f̂j)σj − (f̂ ′
j)

2U(f̂j)σj. (63)

This short time action differs in form from a classical action by the quantum correction

term. In a path integral, as is in the case of Schrödinger’s equation, the change of

variable gives rise to a correction term, see for example [50].

Under the operations of Rf and δTf , the measure in (36), together with the

normalisation factor, changes as
N∏
j=1

[
m

2πiℏτj

]1/2 N−1∏
j=1

drj =
N∏
j=1

[
m

2πiℏτj

]1/2 N−1∏
j=1

(f ′
jdρj)

= (f ′
0f

′
N)

−1/2
N∏
j=1

[
m

2πiℏτj

]1/2 N∏
j=1

f̂ ′
j

N∏
j=1

dρj

= (f ′
0f

′
N)

−1/2
N∏
j=1

[
m

2πiℏσj

]1/2 N−1∏
j=1

dρj.

(64)
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With the transformed action (63) and the transformed measure (64), the one

dimensional radial path integral (36) becomes

P(a)
ℓ (r′′, r′; τ) = P̃(b)

ℓ (ρ′′, ρ′;σ) =
1√

f ′(ρ′)f ′(ρ′′)
P(b)

ℓ (ρ′′, ρ′;σ) (65)

where f ′(ρ′) and f ′(ρ′′) are the first derivatives of f(ρ) with respect to ρ at ρ′ and ρ′′,

respectively, and

P(b)
ℓ (ρ′′, ρ′;σ) = lim

N→∞

∫ N−1∏
j=1

dρj

N∏
j=1

[
m

2πiℏσj

]1/2 N∏
j=1

exp

{
i

ℏ
W (b)(ρj, ρj−1;σj)

}
. (66)

In (65), P̃(b)
ℓ (ρ′′, ρ′;σ) describes the form directly transformed, whereas P(b)

ℓ (ρ′′, ρ′;σ) has

a form similar to that of P(a)
ℓ (r′′, r′; τ) (i.e., symmetric under operation X(b, a)). The

short time action W (b)(ρj, ρj−1;σj) on the right hand side of (65) is the one given by

(63). From (38) it is apparent that P̃(b)
ℓ (ρ′′, ρ′;σ) satisfies the normalisation condition,

lim
σ→0

P̃(b)
ℓ (ρ′′, ρ′;σ) =

1√
f ′(ρ′)f ′(ρ′′)

δ(ρ′′ − ρ′) = δ (f(ρ′′)− f(ρ′)) , (67)

whereas P(b)
ℓ (ρ′′, ρ′;σ) is normalised by

lim
σ→0

P(b)
ℓ (ρ′′, ρ′;σ) = δ(ρ′′ − ρ′). (68)

In this manner, the space and time transformation, Rf plus δTf , takes the one-

dimensional radial path integral P(a)
ℓ (r′′, r′; τj) of (36) normalised by (38) to the one-

dimensional radial path integral P̃(b)
ℓ (ρ′′, ρ′;σ) if normalised by (67) or P(a)

ℓ (ρ′′, ρ′;σ) of

(66) if normalised by (68).

While the time parameters t and s subjected to (62) are those associated with path

integration, the finte time intervals τ = t′′− t′ and σ = s′′−s′ in the promotors, between

which (62) provides no transformation rule, are to be used as integration variables of

Riemann integrals. The integration variables τ and σ are both uniformly increasing

in the range (0,∞). Hence, even though dt = g(ρ(s))ds is not integrable, we may let

dτ = kdσ where k is a constant. To be compatible with the short time transformation

(62), we let k = f ′(ρ′′)f ′(ρ′). Thus we have

dτ = f ′(ρ′′)f ′(ρ′)dσ. (69)

Using the relations of (65) and (69) in (41), we obtain

G(a)
ℓ (r′′, r′;Ea) =

√
f ′(ρ′)f ′(ρ′′)G(b)

ℓ (ρ′′, ρ′;Eb), (70)

where

G(b)
ℓ (ρ′′, ρ′;Eb) =

1

iℏ

∫ ∞

0

dσP(b)
ℓ (ρ′′, ρ′;σ), (71)

which is the one-dimensional radial Green function corresponding to the radial promotor

(66) obtained by the space and time transformation.
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3.2. Completing Duality Operations

Starting with the path integral for the promotor in D dimensions, we have carried out

the angular integrations in D − 1 dimensions and obtained the one-dimensional radial

path integral, Pl(r
′′, r′; τ). Then, by performing the transformation of radial variable,

Rf , and the short time transformation, δTf , on the radial path integral, we have arrived

at a similar one-dimensional radial path integral, P(b)
l (ρ′′, ρ′;σ), in (66). However, the

transformed path integral contains the action which is physically senseless until the

transformation function f(ρ) is explicitly spelled out. To be ready for discussing the

power duality in the path integral formulation, since the duality transformation for the

path integral consists of the angular momentum transformation L, fixing a parameter

of the space transformation C, and the energy-coupling interchange operation E, in

addition to Rf and δTf , we have to perform the remaining operations, L, C and E, and

to shape up P(b)
l (ρ′′, ρ′;σ) to a physically significant path integral.

The polar coordinate formulation of a path integral developed in the preceding

sections is for a general central force potential V (r). What is needed for the present

study is a power potential. To simplify our argument, we shall restrict ourselves to a

two-term power potential of the form,

V (r) = Va(r) = λar
a + λa′r

a′ , (72)

where a, a′ ̸= 0, λa and λb being real constants.

Let system A be represented by the one-dimensional radial promotor Pℓ(r
′′, r′; τ) of

(36) defined for the power potential (72). Introducing a prefactor φ(a)(r′r′′) for symmetry

adjustment, we consider the radial promotor of system A as a path integral,

P(a)(r′′, r′;La; τ) = φ(a)(r′r′′)P(a)(r′′, r′;La; τ) (73)

where

P(a)(r′′, r′;La; τ) = lim
N→∞

∫ N−1∏
j=1

drj

N∏
j=1

[
m

2πiℏτj

]1/2 N∏
j=1

exp

{
i

ℏ
W (a)(rj, rj−1; τj)

}
(74)

with

W (a)(rj, rj−1, τj) =
m

2τj
(∆rj)

2 −
(
L2
a − 1

4

)
ℏ2

2mr̂2j
τj − U (a)(r̂j)τj (75)

and

U (a)(r̂j) = λar̂
a
j + λa′ r̂

a′

j − Ea , a ̸= 0. (76)

Evidently P(a)(r′′, r′;La; τ) satisfies

lim
τ→0

P(a)(r′′, r′;La; τ) = φ(a)(r′r′′)δ(r′′ − r′). (77)

Here La indicates the pre-quantized angular momentum of system A. In other words,

La = ℓa + (D − 1)/2 with ℓa ∈ N0 is not assumed. Let system B be expressed in terms

of Pℓ(ρ
′′, ρ′;σ) of (66) for the power potential (72) as

P(b)(ρ′′, ρ′;Lb;σ) = φ(b)(ρ′ρ′′)P(b)(ρ′′, ρ′;Lb;σ), (78)
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where

P(b)(ρ′′, ρ′;Lb;σ) = lim
N→∞

∫ N−1∏
j=1

dρj

N∏
j=1

[
m

2πiℏσj

]1/2 N∏
j=1

exp

{
i

ℏ
W (b)(ρj, ρj−1;σj)

}
(79)

with

W (b)(ρj, ρj−1;σj) =
m

2σj
(∆ρj)

2 +
(f̂ ′

j)
2
(
L2
a − 1

4

)
ℏ2

2mf̂ 2
j

σj − (f̂ ′
j)

2Vc(f̂j)σj − U (b)(ρ̂j)σj (80)

and

U (b)(ρ̂j) = f̂ 2
j U

(a)(f̂j) = (f̂ ′
j)

2
(
λa(f̂j)

a + λa′(f̂j)
a′ − Ea

)
. (81)

In (78), also, an undetermined prefactor φ(b)(ρ′ρ′′) is inserted. Hence, P(b)(ρ′′, ρ′;Lb;σ)

of (78) obeys

lim
σ→0

P(b)(ρ′′, ρ′;Lb;σ) = φ(b)(ρ′ρ′′)δ(ρ′′ − ρ′). (82)

Here Lb signifies the angular momentum of system B, but in the action of (80) there is

no quantity that can immediately be identified with the angular momentum of system

B. It will be fixed only after the transformation function f(ρ) is specified.

It is apparent that W (a)(rj, rj−1, τj) and W
(b)(ρj, ρj−1;σj) are the same short time

action expressed in different sets of space and time variables. They are equal but

have different forms. Notice also that the measure of the path integral transforms as

shown in the equality (64) but is not form-invariant due to the presence of the factor

(f ′(ρ′)f ′(ρ′′))−1/2. In general, P(a)(r′′, r′;La; τ) does not transform to P(b)(ρ′′, ρ′;Lb;σ)

under Rf and δTf . However, if there exist φ(a)(r′r′′) and φ(b)(ρ′ρ′′) such that

φ(a)(r′r′′)

φ(b)(ρ′ρ′′)
=
√
f ′(ρ′)f ′(ρ′′), (83)

then system A transforms to system B, that is,

P(a)(r′′, r′;La; τ) = P(b)(ρ′′, ρ′;Lb;σ). (84)

In the above, we have used L instead of ℓ to indicate the angular momentum. As

will be seen later, the use of ℓ ∈ N0 is misleading. The power duality transformation

takes La into Lb, but cannot take an integral ℓa into an integral ℓb. The subscript ℓ will

be used only after the quasi-dual procedure is introduced.

The first step for performing the duality transformation is to choose a specific

transformation function f(ρ) of Rf . Let us specify f(ρ) as a power function,

R : r = f(ρ) = Cρη , η > 0 , (85)

where C is a constant with a dimension of ρ1−η. For this function, f̂j = Cρ̂ηj where

ρ̂j =
√
ρjρj−1 and f̂ ′

j =
√
f ′
jf

′
j−1 = Cηρ̂η−1

j = df̂j/dρ̂j. Hence the time transformation

associated with R should be

δTf : τj = C2η2ρ̂2η−2
j σj. (86)
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It is also clear that the Schwarz derivative (55) takes the form,

(Sf)(ρ̂j) = −η
2 − 1

2ρ̂2j
. (87)

Accordingly, the quantum correction term in (63) is given by

(f̂ ′
j)

2Vc(f̂j)σj =
(η2 − 1)ℏ2

8mρ̂2j
σj. (88)

Applying R to the short time action (80) and combining the correction term (88)

to the angular momentum term in (80), we obtain

W (b)(ρj, ρj−1;σj) =
m

2σj
(∆ρj)

2 +

(
η2L2

a − 1
4

)
ℏ2

2mρ2j
σj − U (b)(ρ̂j)σj. (89)

with

U (b)(ρ̂j) = λaC
2η2(ρ̂j)

aη+2η−2 + λa′C
2η2(ρ̂j)

a′η+2η−2 − EaC
2η2ρ̂2η−2

j . (90)

In the action (89), it is apparent that the quantity corresponding to the angular

momentum of system B is ηLa in the second term on the right-hand side. In fact, the

angular momentum replacement operation contained in the duality transformation ∆

dictates

L : Lb = |η|La, (91)

which we implement on the action (89).

Next, on (90) we perform the two remaining operations that characterize the duality

transformation by recalling

η = − b

a
=

2

a+ 2
=
b+ 2

2
, a ̸= 0 and a ̸= −2 . (92)

The energy-coupling swap,

E : Eb = −η2Ca+2λa , λb = −η2C2Ea , (93)

and the power transformation in the secondary potential,

S : λb′ =

(
2

a+ 2

)2

Ca′+2λa′ , b′ =
2(a′ − a)

a+ 2
. (94)

As a result, we reach the short time action,

W (b)(ρj, ρj−1;σj) =
m

2σj
(∆ρj)

2 +

(
L2
b − 1

4

)
ℏ2

2mρ2j
σj − U (b)(ρ̂j)σj. (95)

with

U (b)(ρ̂j) = λb(ρ̂j)
b + λb′(ρ̂j)

b′ − Eb. (96)

Just as the case of the finite time classical action, the short time action for a

quantum particle remains form-invariant (symmetric under X(a, b)) under the full

duality transformation ∆δ = {R, δT,L,E,S}.
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Now that f(ρ) = Cρη is given by (85) and η by (92), we have f ′(ρ) = (η/ρ)f(ρ) =

−(b/a)(r/ρ) and√
f ′(ρ′)f ′(ρ′′) =

∣∣∣∣ ba
∣∣∣∣ √r′r′′√

ρ′ρ′′
. (97)

Hence we may choose the prefactors of the form,

φ(a)(r′r′′) =
1

|a|
√
r′r′′, φ(b)(ρ′ρ′′) =

1

|b|
√
ρ′ρ′′ , (98)

to satisfy the condition (83).

With this choice of prefactors, the path integral (73) for the one-dimensional

promotor of system A transforms to that for the one-dimensional promotor of system

B under ∆δ, that is,

P(b)(ρ′′, ρ′;Lb;σ) =
1

|b|
√
ρ′ρ′′

× lim
N→∞

∫ N−1∏
j=1

dρj

N∏
j=1

[
m

2πiℏσj

]1/2 N∏
j=1

exp

{
i

ℏ
W (b)(ρj, ρj−1;σj)

}
,

(99)

where the short time actionW (b)(ρj, ρj−1;σj) is the one given by (95) and supplemented

by (96).

In (84), we have already seen that P(a)(r′′, r′;La; τ) equals P(b)(ρ′′, ρ′;Lb;σ) via

∆δ. If we let ρ′ = ra, ρ
′′ = rb, τ = τa and σ = τb, then it is also apparent that

P(b)(ρ′′, ρ′;Lb;σ) returns to P(a)(r′′, r′;La; τ) under the parameter exchange operation

X(a, b) insofar as they are expressed in the path integral form. However, once the

path integration is carried out, the explicit exchange symmetry of the promotor will be

lost. Suppose that the path integration can be carried out for system A and system

B, and that the promotors for the two systems can be brought, respectively, to two

closed form expressions depending on finite time intervals τ and σ. Since the time-

transformation involved in duality transformations are infinitesimal and not integrable,

operation ∆δ does not stipulate a way to relate τ to σ. Hence, the X(a, b) symmetry

is no longer meaningful for the promotors given in closed form. In this regard, the

exchange symmetry is not explicit. Nevertheless, we may say, though in a weaker sense,

the one-dimensional promotors, P(a)(r′′, r′;La; τ) and P(b)(ρ′′, ρ′;Lb;σ), are essentially

power-dual to each other.

The one-dimensional radial Green functions of system A and system B are given,

respectively, by (41) and (71), satisfying (70), namely,

G(a)(r′′, r′;La;Ea) =
√
f ′(ρ′)f ′(ρ′′)G(b)(ρ′′, ρ′;Lb;Eb). (100)

In a manner parallel to the symmetrized (bold-faced) promotors, we define the

symmetrized Green functions,

G(a)(r′′, r′;La;Ea) = [φ(a)(r′r′′)]−1 G(a)(r′′, r′;La;Ea), (101)

and

G(b)(ρ′′, ρ′;Lb;Eb) = [φ(b)(ρ′ρ′′)]−1 G(b)(ρ′′, ρ′;Lb;Eb). (102)
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Then we have

G(a)(r′′, r′;La;Ea) = G(b)(ρ′′, ρ′;Lb;Eb), (103)

which means that G(a)(r′′, r′;La;Ea) is brought to G(b)(ρ′′, ρ′;Lb;Eb) by ∆δ. To carry

out the time integration in (71), the promotor must be in a closed form expression.

Hence the resultant Green functions may not generally be symmetric under X(a, b).

Again, in a weaker sense, we may say that the Green functions (101) and (102) are

power-dual to each other.

It is important, however, to recognize that the implicit power-dual symmetry

possessed by the radial promotors and the corresponding Green functions breaks down

as soon as the angular momentum L is quantized. Suppose each of La and Lb is given

by (33), that is,

La = ℓa + (Da − 2)/2, Lb = ℓb + (Db − 2)/2. (104)

Then the angular duality operation, L: Lb = ηLa, should imply

ℓb + (Db − 2)/2 = ηℓa + η(Da − 2)/2, (105)

which does not warrant that ℓb will be integral when ℓa is an integer since η can be

fractional. Furthermore, if the space dimension is assumed to be a positive integer, it

is difficult for both ℓa and ℓb to be integral simultaneously. An exceptional example is

the case where Da = 3, Db = 2 and η = 2. In this case, ℓa = 0, 1, 2, ... corresponds to

ℓb = 1, 3, 5, .... As has been mentioned in [1], this situation occurs in the correspondence

between the full three-dimensional Coulomb problem and the odd-half of the two-

dimensional harmonic oscillator at the spectrum level. Such a correspondence between

two different dimensions is beyond the context of the power duality argument.

Since we have been considering the power duality between two systems in the same

dimension, we let Da = Db. Then (105) is simplified as

ℓb = ηℓa + (η − 1)(D − 2)/2, (106)

with which the situation still remains unimproved.

To construct any D dimensional full promotor P (r′′, r′; τ) expressed in spherical

polar coordinates by the partial wave series expansion (29), we need a complete set of

partial wave components Pℓ(r
′′, r′; τ) with ℓ = 0, 1, 2, .... Hence the angular operation

(105) must bring us the correspondence between ℓa = 0, 1, 2, ... and ℓb = 0, 1, 2, ..., but

fails in general. Therefore, even if two L dependent radial promotors, P(a)(r′′, r′;La; τ)

and P(b)(ρ′′, ρ′;Lb;σ), are power-dual to each other, the corresponding partial wave

promotors Pℓa(r
′′, r′; τ) with ℓa = 0, 1, 2, ... and Pℓb(ρ

′′, ρ′;σ) with ℓb = 0, 1, 2, ... are not

exactly a power-dual pair. Consequently, the corresponding full promotors, P (a)(r′′, r′; τ)

and P (b)(ρ′′,ρ′;σ), are not power-dually symmetric. This leads us to a conclusion that

the path integral formulation of quantum mechanics as a whole does not possess the

power duality symmetry.

Having said so, we are still able to utilize the basic idea of power duality for path

integrals by making a semi-classical like interpretation of operation L : Lb = ηLa. First,



Power-Duality in Path Integral Formulation of Quantum Mechanics 20

we consider L as a classical operation by giving up the transformation of the form (105).

After L is applied, we make an ad hoc replacements,

Lq : La = ℓ+ (D − 2)/2, Lb = ℓ+ (D − 2)/2, (ℓ ∈ N0). (107)

As a result of (107), the actions (75) and (80) are expressed, respectively, by

W
(a)
ℓ (rj, rj−1, τj) =

m

2τj
(∆rj)

2 − (ℓ+ (D − 3)/2) (ℓ+ (D − 1)/2) ℏ2

2mr̂2j
τj − (λar

a − Ea) τj,
(108)

and

W
(b)
ℓ (ρj, ρj−1;σj) =

m

2σj
(∆ρj)

2 +
(ℓ+ (D − 3)/2) (ℓ+ (D − 1)/2) ℏ2

2mρ̂2j
σj −

(
λbρ

b − Eb

)
σj.

(109)

Although the La dependent action W (a)(rj, rj−1; τj) transforms into the Lb dependent

action W (b)(ρj, ρj−1;σj) under the power duality transformation ∆, the ℓ dependent

W
(a)
ℓ (rj, rj−1, τj) does not transform to the ℓ dependent W

(b)
ℓ (ρj, ρj−1;σj) under ∆.

Therefore,W
(a)
ℓ (rj, rj−1, τj) andW

(b)
ℓ (ρj, ρj−1;σj) are no longer power dual to each other.

Nevertheless, it is true that W
(b)
ℓ (ρj, ρj−1;σj) goes back to W

(a)
ℓ (rj, rj−1, τj) by X(a, b).

If we define the quasi-power-dual transformation by ∆q = {∆,Lq}, then

W
(a)
ℓ (rj, rj−1, τj) ≃ W

(b)
ℓ (ρj, ρj−1;σj), (110)

where ≃ signifies the equality under ∆q. Thus, these ℓ dependent short time

actions are dual to each other with respect to ∆q, or quasi-power-dual to each other.

Correspondingly, if we define the one-dimensional promotors for the ℓ-th wave by

P
(a)
ℓ (r′′, r′; τ) = P(a)(r′′, r′;La; τ)

∣∣
La=ℓ+(D−2)/2

, ℓ ∈ N0 , (111)

and

P
(b)
ℓ (ρ′′, ρ′;σ) = P(b)(ρ′′, ρ′;Lb;σ)

∣∣
Lb=ℓ+(D−2)/2

, ℓ ∈ N0, (112)

then we may say that P
(a)
ℓ (r′′, r′; τ) and P

(b)
ℓ (ρ′′, ρ′;σ) are quasi-dual to each other, and

write as

P
(a)
ℓ (r′′, r′; τ) ≃ P

(b)
ℓ (ρ′′, ρ′;σ). (113)

The ℓ dependent Green functions can be constructed by using the ℓ ∈ N0 dependent

promotors, (111) and (112); that is, ,

G
(a)
ℓ (r′′, r′;Ea) = G(a)(r′′, r′;La;Ea)

∣∣
La=ℓ+(D−2)/2

, (114)

and

G
(b)
ℓ (ρ′′, ρ′;Eb) = G(b)(ρ′′, ρ′;Lb;Eb)

∣∣
Lb=ℓ+(D−2)/2

, (115)

respectively. They are also quasi-power-dual to each other,

G
(a)
ℓ (r′′, r′;Ea) ≃ G

(b)
ℓ (ρ′′, ρ′;Eb). (116)
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Utilizing the quasi-dual relation (116), we are able to determine the ℓ dependent

one-dimensional Green function of system A if we know the form of the ℓ dependent

one-dimensional Green function of system B. Namely, we obtain

G
(a)
ℓ

(
r′′, r′; ℓ+ D−2

2
;Ea;λa;λa(i)

)
=

G
(b)
ℓ

(
(r′/C)1/η, (r′′/C)1/η; η(ℓ+ D−2

2
);−η2Ca+2λa;−η2C2Ea;λb(i)

)
,

(117)

where ℓ ∈ N0, λb(i) =
(

2
a+2

)2
Ca(i)+2λa(i) and η = −b/a with a ̸= 0. Here we added two

more parameters for the coupling constants to reflect the energy-coupling swapping (6)

and the change in the secondary potential (7). This formula is similar to the relation

obtained for the Green function satisfying the Schrödinger equation by Johnson [24].

Note that this type of trick is not applicable in finding a closed form expression of

the propagator or the promotor because the finite time transformation rule lacks in ∆δ.

4. Coulomb-Hooke Pair and Confinement Model

Since the exactly path integrable systems are very limited, we select the Coulomb-Hooke

dual pair and a family of confinement models as examples of solvable dual pairs.

4.1. Example 1: Coulomb-Hooke dual pair (a, b) = (−1, 2)

Let system A be the radial part of the hydrogen-like atom in 3 dimensional space

and system B be a 3 dimensional radial harmonic oscillator. So we have a dual pair

(a, b) = (−1, 2) with λa = −Ze2, λb = 1
2
mω2, Ea = −Z2e4m/[2ℏ2(n + ℓ + 1)2] and

Eb = ℏω(2n+ ℓ+ 3/2), where n, ℓ ∈ N0.

The harmonic oscillator is a typical example for which Feynman’s path integral

can be exactly evaluated. Feynman [2] derived the propagator for the oscillator from

the path integral in cartesian coordinates. For the radial oscillator, Peak and Inomata

[39] obtained the propagator from the radial path integral. On the other hand, the

propagator for the Coulomb system had been considered difficult to construct in closed

form by path integration or otherwise. As for the Coulomb Green function, Hostler [51]

obtained a closed form expression as well as a series expansion in polar coordinates by

using the solutions of the Schrödinger equation.

Despite the fact that the hydrogen atom solution symbolized the success of the

Schrödinger equation, Feynman’s path integral with the Coulomb potential cannot be

solved. By applying formally the Kustaanheimo-Stiefel transformation [7] to the path

integral in the Hamiltonian formulation, Duru and Kleinert [33] succeeded to derive

the Green function for the hydrogen atom in the momentum representation. Similarly.

though explicitly, implementing the Kustaanheimo-Stiefel transformation in Feynman’s

path integral in the Lagrangian formulation, Ho and Inomata [34] obtained the Green

function for the hydrogen atom in polar coordinates. Soon after, Inomata [35] and

Steiner [36] independently found a simplified way to calculate the radial Green function

for the Coulomb problem by applying a space-time transformation to the radial path
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integral. Now, recognizing that many previously employed procedures are covered by

the unified framework of power-duality.

As has been seen in Section 3, the short time radial action W (rj, rj−1, τj) is dual-

form invariant under ∆δ. For the dual pair (a, b) = (−1, 2), we have η = −b/a = 2.

In this case, a′ = b′ = 0. The corresponding duality transformation ∆δ consists of

operations,

R : r = f(ρ) = Cρ2, (118)

δT : τj = 4C2ρ2σj, (119)

L : Lb = 2La, (120)

E : Eb = −4Cλa, λb = −4C2Ea. (121)

Under ∆δ with η = 2, the short time radial action for the hydrogen-like atom,

Wa(rj, rj−1, τj) =
m

2τj
(∆rj)

2 −
(
L2
a − 1

4

)
ℏ2

2mr̂2j
τj +

Ze2

r̂j
τj + Eaτj , (122)

transforms into the one for the radial oscillator,

Wb(ρj, ρj−1;σj) =
m

2σj
(∆ρj)

2 +

(
L2
b − 1

4

)
ℏ2

2mρ̂2j
σj −

1

2
mω2ρ̂2jσj + Ebσj (123)

with for which path integration has been explicitly carried out. Therefore, using the

path integration result for the radial harmonic oscillator (the oscillator or Osc in short),

we are able to construct at least the Green function for the hydrogen-like atom (the

Coulomb system or Coul in short) via the quasi-dual formula (116).

The propagator derived by Peak and Inomata [39] for the radial oscillator when

Lb = ℓ+ 1/2, ℓ ∈ N0, is

K
(Osc)
ℓ (ρ′′, ρ′;σ) =

mω

iℏ
√
ρ′ρ′′ sin(ωσ)

× exp

{
imω

2ℏ tan(ωσ)
(
ρ′2 + ρ′′2

)}
Iℓ+ 1

2

(
mωρ′ρ′′

iℏ sin(ωσ)

) (124)

which, as is clear from (B.2) for σ small, satisfies the condition,

lim
σ→0

K
(Osc)
ℓ (ρ′′, ρ′;σ) =

1

ρ′ρ′′
δ(ρ′′ − ρ′). (125)

The corresponding one-dimensional promotor is

P(Osc)
ℓ (ρ′′, ρ′;σ) = ρ′ρ′′K

(Osc)
ℓ (ρ′′, ρ′;σ)e

i
ℏEbσ

=
mω

√
ρ′ρ′′

iℏ sin(ωσ)
exp

{
imω

2ℏ tan(ωσ)
(
ρ′2 + ρ′′2

)}
e

i
ℏEbσ Iℓ+ 1

2

(
mωρ′ρ′′

iℏ sin(ωσ)

)
,

(126)

which is normalised as

lim
σ→0

P(Osc)
ℓ (ρ′′, ρ′;σ) = δ(ρ′′ − ρ′). (127)
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Although we know that P(Osc)(ρ′′, ρ′;Lb;σ) = φ(b)(ρ′ρ′′)P(Osc)
ℓ (ρ′′, ρ′;σ) has its

dual partner P(Coul)(r′′, r′;La; τ), neither the propagator (124) nor the promotor (126)

is directly helpful in predicting the counterpart of the partner system because the

transformation rule of time intervals σ → τ lacks in ∆δ. Since the Green function

is time-independent, we attempt to reach the Coulomb system from the Green function

for the radial oscillator.

The Green function for Osc is in principle obtainable by integrating the promotor

(126) over σ as shown in (40), that is,

G(Osc)
ℓ (ρ′′, ρ′;Eb) =

1

iℏ

∫ ∞

0

dσP(Osc)
ℓ (ρ′′, ρ′;σ) (128)

which is nonetheless problematic. As P(Osc)
ℓ (ρ′′, ρ′;σ) of (126) diverges when ωσ =

nπ (n ∈ N0), the σ integration from 0 to ∞ cannot be achieved. To circumvent this

problem, we treat the integration variable as a complex number by letting z = ωσ and

the promotor as a complex function of z by letting F (z) = (1/iℏ)P(Osc)
ℓ (ρ′′, ρ′; z/ω).

Since F (z) has simple poles at z = zn = nπ (n ∈ N0) and is analytic in the lower right

quadrant (Re z ≥ 0, Im z < 0) of the z-plane, we consider the integral along a closed

contour C satisfying Cauchy’s theorem,
∮
C
dzF (z) = 0. Writing z = α + iβ = qeiθ

where q =
√
α2 + β2, tan θ = α/β and α, β,∈ R, we choose C to be consisting of three

parts(see also Figure 1):

C1 = {Re z = αn | zn + ε ≤ αn ≤ zn+1 − ε, 0 < ε < π
2
, n ∈ N0 }

∪ {z = zn + εeiϕn | − π/2 ≤ ϕ0 ≤ 0, −π ≤ ϕn ≤ 0, n ∈ N}
from α = 0 to α = q1 along the real line of z;

C2 = {z = q1e
iθ | − π/2 ≤ θ ≤ 0 } from θ = 0 to θ = −π/2 (clockwise); and

C3 = {−q1 ≤ β ≤ ε} from β = −q1 to β = 0 along the imaginary line of z.

By doing so, we interpret the σ-integral of (128) as

G(Osc)
ℓ (r′′, r′;Eb) = lim

ε→0, q1→∞

∫
C1
dzF (z). (129)

Since the contribution of the integral along C2 diminishes as q1 tends to infinity, Cauchy’s

theorem implies that

G(osc)
ℓ (ρ′′, ρ′;Eb) = −

∫
C3
dzF (z)

=
m
√
ρ′ρ′′

ℏ2

∫ ∞

0

dq

sinh q
exp

{
−mω (ρ′2 + ρ′′2)

2ℏ tanh q

}
e(Eb/ℏω)q Iℓ+ 1

2

(
mωρ′ρ′′

ℏ sinh q

)
,

(130)

which is integrable.

At this point, we take G(Osc)
ℓ (ρ′′, ρ′;Eb) to G(Osc)(ρ′′, ρ′;Lb;Eb) by changing ℓ+ 1/2

back to Lb in (130). Since the ℓth Green function, G(Osc)
ℓ (ρ′′, ρ′;Eb), has no power-

dual counterpart, we deal with the L-dependent Green function in order to proceed our

argument on the base of power duality. As needed, we return to the ℓ-dependent Green

function by letting Lb = ℓ+ 1/2.
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Re z
Im z
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▲

Figure 1. The contour C composed out of the three parts C1 (red), C2 (blue) and C3
(green).

The result of integration on the right hand side of (130) can be found from formula

6.669.4 of the Gradshteyn-Ryzhik table [41]. After changing the integration variable

from x to q by coth(x/2) = eq it reduces to the formula,∫ ∞

0

dq

sinh q
exp

{
−α(a1 + a2)

tanh q

}
e2νq I2µ

(
2α

√
a1a2

sinh q

)
=

Γ(µ− ν + 1
2
)

2α
√
a1a2 Γ(2µ+ 1)

Wν,µ(2αa1)Mν,µ(2αa2)

(131)

where Re (µ − ν + 1/2) > 0, Reµ > 0, and a1 > a2. With the help of this formula, we

obtain the one-dimensional L-dependent Green function for the radial oscillator,

G(osc)(ρ′′, ρ′;Lb;Eb)

=
1

ℏω
√
ρ′ρ′′

Γ
(
1
2
Lb − kb +

1
2

)
Γ (Lb + 1)

Wkb,
1
2
Lb

(mω
ℏ
ρ′′ 2
)
Mkb,

1
2
Lb

(mω
ℏ
ρ′ 2
) (132)

where kb = Eb/(2ℏω) and ρ′′ > ρ′. By letting Lb = ℓ+ 1
2
back, we have the ℓ-dependent

Green function,

G(Osc)
ℓ (ρ′′, ρ′; Eb) = G(osc)(ρ′′, ρ′;Lb;Eb)|Lb=ℓ+ 1

2
. (133)

Since φ(b)(ρ′ρ′′) = 1
2

√
ρ′ρ′′, the corresponding dual-symmetric Green function is given

by

G(osc)(ρ′′, ρ′;Lb;Eb) =
1

φ(ρ′ρ′′)
G(osc)(ρ′′, ρ′;Lb;Eb)

=
2

ℏω ρ′ρ′′
Γ
(
1
2
Lb − kb +

1
2

)
Γ (Lb + 1)

Wkb,
1
2
Lb

(mω
ℏ
ρ′′ 2
)
Mkb,

1
2
Lb

(mω
ℏ
ρ′ 2
)
.

(134)
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In this manner, we have derived the Green function from the path integral result (124)

for the oscillator. Of course, the Green function (132) provides us the energy spectrum

from its poles and the eigenfunctions from the residues at the poles.

In general, the Gamma function can be separated to a singular part and a non-

singular part as

Γ(ζ) =
∞∑
n=0

(−1)n

n! (ζ + n)
+ Φ(ζ) (135)

where Φ(ζ) is an integral function. Evidently it has simple poles at ζ = −n with residues

given by (−1)n

n!
. Hence Γ

(
1
2
Lb − kb +

1
2

)
in the numerator of (132) may be represented

by the dominant term near a pole kb = kb,n for any n ∈ N0 where kb,n = n+ (Lb +1)/2,

Γ

(
1

2
Lb − kb +

1

2

)
≈ (−1)n

n!

1

kb,n − kb
= 2ℏω

(−1)n

n!

1

E
(Osc)
n − Eb

(136)

where E
(Osc)
n = 2ℏω kb,n. The pole at Eb = E

(Osc)
n of (136) is indeed the energy spectrum

for the radial oscillator, if Lb = ℓ+ 1
2
,

E
(Osc)
n,ℓ = ℏω

(
2n+ ℓ+

3

2

)
(137)

where n ∈ N0 and ℓ ∈ N0. Noticing also that, when ν = α+1
2

+ n and µ = α/2, the

Whittaker function Wν,µ(z) is expressible in terms of Mν,µ(z) as

Wα+1
2

+n, α
2
(z) = (−1)n

Γ(n+ α + 1)

Γ(α + 1)
Mα+1

2
+n, α

2
(z), (138)

we have the residues of the Green function (132),

Res
Eb=E

(osc)
n

G(osc)(ρ′′, ρ′;Lb;Eb) = v∗n(ρ
′) vn(ρ

′′)

=
2√
ρ′ρ′′

Γ (n+ Lb + 1)

n! [Γ (Lb + 1)]2
Mkb,n,

1
2
Lb

(mω
ℏ
ρ′′ 2
)
Mkb,n,

1
2
Lb

(mω
ℏ
ρ′ 2
) (139)

from which we can read off the normalised energy eigenfunctions defined in L2(dρ)

space‡ by letting Lb = ℓ+ 1/2,

vn,ℓ(ρ) =

√
2Γ (n+ ℓ+ 3/2)

n! [Γ (ℓ+ 3/2)]2
ρ−1/2Mn+ 1

2
ℓ+ 3

4
, 1
2
ℓ+ 1

4

(mω
ℏ
ρ 2
)
. (140)

So far we have examined the process for reproducing the solutions of the Schrödinger

equation from the path integral result via the Green function for the oscillator. However,

‡ The eigenfunctions (140) are normalised by∫ ∞

0

dρ |vn(ρ)|2 = 1.

This can easily be confirmed with the help of the formula,∫ ∞

0

dx [Mα+1
2 +n,α2

(x)]2 x−1 =
n! [Γ(α+ 1)]2

Γ(n+ α+ 1)
,

obtainable from the orthogonality relation of the Laguerre polynomials.
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power duality has played no role. Next we turn ourselves to the power-dual partner,

the Coulomb system. Since no closed form expression of the propagator is available

for the hydrogen atom, we attempt to construct the dual-symmetric Green function

G(Coul)(r′′, r′;La;Ea) out of G
(Osc)(ρ′′, ρ′;Lb;Eb) via the power-dual formula (103). The

duality transformation ∆δ with η = 2 for a = −1 and b = 2 consists of

R : r = Cρ2 , δT : δt = 4C2ρ2δs , L : Lb = 2La ,

E : Eb = −4Cλa , λb = −4C2Ea , and S : λb′ = 0 .

Before replacing the quantities with subscript b by those with a in the Green function

(132), we fix the constant C in operation R by using the second relation of operation E;

namely C =
√
λb/(−4Ea) or C = mω/(2κℏ) where κℏ =

√
−2mEa . Then R implies

(mω/ℏ)ρ2 = 2κr, and the first relation of E yields kb = Eb/(2ℏω) = mZe2/(κℏ2).
Finally, letting ka = mZe2/ℏ

√
−2mEa and Lb = 2La = ℓ + 1/2 with ℓ ∈ N0, we arrive

at the L-dependent symmetrized radial Green function for the hydrogen-like atom,

G
(Coul)
ℓ (r′′, r′;La;Ea;λa) = G(Osc)

(√
r′′/C,

√
r′/C; 2La;−4Cλa;−4C2Ea

)
=

m

κℏ2
√
r′r′′

Γ
(
La − ka +

1
2

)
Γ (2La + 1)

Wka,La (2κ r
′′)Mka,La (2κ r

′) .
(141)

With φ(r′r′′) =
√
r′r′′, the L-dependent one-dimensional radial Green function for the

Coulomb system takes the form,

G(Coul)(r′′, r′;La;Ea) = φ(a)(r′r′′)G(Coul)(r′′, r′;La;Ea)

=
m

κℏ2
Γ
(
La − ka +

1
2

)
Γ (2La + 1)

Wka,La (2κ r
′′)Mka,La (2κ r

′) ,
(142)

where ka = mZe2/(κℏ2). To convert the L-dependent Green function to the ℓ-dependent

Green function, we have let Lb = ℓ + 1
2
for the oscillator case. To move from the

oscillator to the hydrogen atom, we have demanded Lb = 2La. We have not demanded

ℓb +
1
2
= 2

(
ℓa +

1
2

)
because this relation is wrong. The power-dual symmetry breaks

down when the angular momentum is quantized. By the quasi-duality procedure,

once the dual transformation is completed between the L-dependent quantities, we let

La = ℓ+ 1
2
as well as Lb = ℓ+ 1

2
. With La = ℓ+ 1

2
, the ℓ dependent radial Green function

for the hydrogen-like atom in 3-dimensional space is found as

G
(Coul)
ℓ (r′′, r′;Ea) = (r′r′′)−1G(Coul)(r′′, r′;La;Ea)|La=ℓ+ 1

2

=
m

κℏ2r′r′′
Γ (ℓ− ka + 1)

Γ (2ℓ+ 2)
Wka,ℓ+

1
2
(2κ r′′)Mka,ℓ+

1
2
(2κ r′) .

(143)

The Gamma function in the numerator of (142) has poles at ka = ka,n where

ka,n = n+ La +
1
2
with n ∈ N0, and can be expressed near the pole at ka = ka,n for any

n ∈ N0 as

Γ(La − ka +
1

2
) ≈ (−1)n

n!

1

ka,n − ka
=

(−1)n

n! ka,n

(κnℏ)2

m

1

E
(Coul)
n − Ea

, (144)
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where κnℏ = mZe2/ka,n and E
(Coul)
n = −(κnℏ)2/(2m). Apparently, the poles of the

Gamma function yield, if La = ℓ+ 1
2
, the energy spectrum of the hydrogen-like atom,

E(Cou)
n = −Z

2e4m

2ℏ2ñ2
(145)

where ñ = n+ ℓ+1 is the principal quantum number. At the pole Ea = E
(Coul)
n for any

n ∈ N0, the residue of the Green function (142) reads

Res
Ea=E

(Coul)
n

G(Coul)(r′′, r′;La;Ea) = u∗n(r
′)un(r

′′)

=
κ

ka,n n!

Γ (n+ 2La + 1)

n! [Γ (2La + 1)]2
Mka,n, La (2κr

′′)Mka,n, La (2κr
′) ,

(146)

which gives us the normalised energy eigenfunction defined in L2(dr) space§ with

La = ℓ+ 1/2,

u
(Cou)
n,ℓ (r) =

√
κΓ(n+ 2ℓ+ 2)

n! (n+ ℓ+ 1) [Γ(2ℓ+ 2)]2
Mn+ℓ+1, ℓ+ 1

2
(2κr). (147)

In this subsection, we have explicitly shown how we utilize the idea of power duality

to construct the Green functions and to reproduce the solutions of the Schrödinger

equation for the hydrogen-like atom from the path integral results for the radial

oscillator. In the earlier paper [1], we have mentioned that the wave function of

the hydrogen atom can be determined from that of the radial oscillator except the

normalisation factor. It is remarkable that the path integral treatment with the help of

power duality can produce the energy eigenfunctions including normalisation.

4.2. Example 2: A Family of Confinement Potentials (a, a′; b, b′) = (a
′

2
− 1, a′; 0, 2)

As the second example, we take up a family of confinement potential models

parameterized by the secondary parameter a′. The special case a′ = 1 was discussed

in the previous paper [1]. Let system A be a particle bound in the zero-energy state

Ea = 0 in the confinement potential,

Va(r) = λar
a′
2
−1 + λa′r

a′ with λa < 0 , λa′ > 0 . (148)

Obviously for a′ > 0 this potential is of the confinement-type exhibiting bound states

only. The particular choice a′ = 1 would indeed be a linear confinement potential for

large r. In order to accommodate a zero energy eigenvalue we need to have for small r

§ The eigenfunctions (147) are normalised by∫ ∞

0

dr |un(r)|2 = 1.

This normalisation is carried out with the help of the formula,∫ ∞

0

dx [Mα+1
2 +n,α2

(x)]2 =
n! [Γ(α+ 1)]2

Γ(n+ α+ 1)
(2n+ α+ 1).
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an attractive potential. This leads us to the additional condition a′ ≤ 2. Hence, we will

consider the range 0 < a′ ≤ 2 for our family of confinement potentials.

It is evident that for the special case La = 1
2
, which corresponds to ℓ = 0, and

the special choice λa = −ℏa′
√
λa′/8m, the above potential generates a supersymmetric

Witten model with SUSY potential Φ(r) =
√
λa′ r

a′/2 resulting in unbroken SUSY and

hence a zero energy ground state [42, 43]. For non-vanishing angular momentum ℓ > 0

we even need a stronger attractive coupling constant. Hence, we require for the first

coupling constant in (148) the necessary condition

λa ≤ −
√

ℏ2a′2λa′
8m

, (149)

which is not sufficient as will be seen below.

System A has a = a′

2
− 1, so we have to apply R with η = 2/(a + 2) = 4/(a′ + 2)

and b = −aη = 2(2 − a′)/(2 + a′)). Hence the duality transformation ∆δ of our choice

consists of

R : r = f(ρ) = Cρ
4

2+a′ (150)

δT : δt =

(
4

2 + a′

)2

C2ρ
4−2a′
2+a′ δs (151)

L : Lb =
4

2 + a′
La. (152)

E : Eb = −
(

4

2 + a′

)2

C(2+a′)/2λa, λb = −
(

4

2 + a′

)2

C2Ea . (153)

S : λb′ =

(
4

2 + a′

)2

Ca′+2λa′ , b′ =
2(a′ − a)

a+ 2
. (154)

Since Ea = 0 is the choice we made for the confinement potential, the second

relation of E demands λb = 0, and the second relation of S determines the power of

the secondary potential b′ = 2. The first relation of E shows that system B must have

a positive energy Eb as λa < 0. Therefore, system B transformed from system A by ∆δ

has the modified potential

Ub(ρ) = λb′r
2 − Eb (λb′ > 0, Eb > 0). (155)

Namely system B turns out to be a radial harmonic oscillator with the energy Eb,

for which the Green function has been evaluated in the previous example. If we let

λb′ =
1
2
mω2, the one-dimensional Green function for system B is written as

G(osc)(ρ′′, ρ′;Lb;Eb) = − 1

ℏω
Γ
(
1
2
Lb − kb +

1
2

)
Γ (Lb + 1)

× 1√
ρ′ρ′′

Wkb,
1
2
Lb

(mω
ℏ
ρ′′ 2
)
Mkb,

1
2
Lb

(mω
ℏ
ρ′ 2
)
,

(156)
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where kb = Eb/(2ℏω). The poles of the Green function (156) occur when Eb =

ℏω(2ν + Lb + 1), ν ∈ N0. With λb′ = 1
2
mω2, if we use the first relation of S to fix

the constant C to be

C =

(
(2 + a′)2mω2

32λa′

) 1
2+a′

, (157)

then the first relation of E specifies a possible value out of the energy spectrum for

system B according to the chosen coupling constant λa of the confinement potential,

Eb =
ω|λa|
2 + a′

√
8m

λa′
. (158)

Inserting the eigenvalues Eb,ν = ℏω(2ν +Lb +1) in above relation, results in admissible

coupling constants given by

λa,ν = −
(
a′ + 2

4

)√
2λa′ℏ2
m

(
2ν +

4La

a′ + 2
+ 1

)
, (159)

which obviously obeys the upper bound (149).

As the harmonic oscillator Green function (156) of system B is mapped via the

duality transformation into that of system A at fixed energy Ea = 0, so are the poles.

In other words, for the admissible coupling constants (159), the pole at Eb,ν is mapped

onto the pole at Ea = 0. Similarly, the residua are mapped onto each other. That is, the

ν-th eigenfunction of system B is mapped onto the zero-energy eigenfunction of system

A and is given by

ψ
(a)
νℓ (r) = Nνℓ r

−(1+a′
4
)Mν+ 2ℓ+1

2+a′+
1
2
, 2ℓ+1
2+a′

(
αr

2+a′
2

)
(160)

with

α =
4

2 + a′

√
2mλa′

ℏ
(161)

and Nνℓ denotes the normalisation constant. The corresponding effective potential reads

V eff
a,ν =

(L2
a − 1

4
)ℏ2

2mr2
− |λa,ν |ra

′/2−1 + λa′r
a′ . (162)

In Figure 2 we show this effective potential for parameter a′ in the range 0 < a′ < 2

using units where ℏ = m = 1, λa′ = 2, angular momentum La = 3/2 (this corresponds

to ℓa = 1) and for values ν = 0, 1, 2, 3. Obviously all these potentials generate a zero-

energy eigenvalue for the associated Hamiltonian. This zero eigenvalue corresponds to

the ν-th energy eigenstate of system A. Note that for increasing ν the parameter (159)

decreases and generates a lower minimum for the effective potential allowing also for

negative eigenvalues.

In concluding this section let us look at some special case of the constructed family

of potentials {V eff
a,ν } which are of particular interest:

Case a′ = 0:

Despite the fact that we excluded that case in above discussion, it is obvious that a′ = 0

corresponds to the Coulomb problem discusses in the previous section. This case is

exactly path integrable as discussed above. No limitation to Ea → 0 is needed.
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Figure 2. The effective potential (162) for La = 3
2 in units where ℏ = m = 1 and

λa′ = 2, for various values of the parameter a′ and for ν = 0, 1, 2, 3 as indicated in the

legend.

Case a′ = 2/3:

In this case the effective potential reduces to a Stillinger-type potential of the form

V eff
a,ν (r) =

(L2
a − 1

4
)ℏ2

2mr2
−
√

8λa′ℏ2
9m

(
2ν +

3

2
La + 1

)
r−

2
3 + λa′r

2
3 . (163)

Here a = −2
3
and η = 3

2
. Let us note that this potential is similar in form to the one

discussed by Stillinger [44]. Stillinger has an attractive centrifugal part with a specific

coupling constant, which is not the case here. See also Ishkhanyan and Krainov [45],

where the Dirac problem for the r1/3-potential is reduced to the non-relativistic Stillinger

potential problem.

Case a′ = 1:

Here we have a = −1/2 and η = 4/3 and the potential is a linear confining one for large

r, which was extensively discussed in ref. [1].

Case a′ = 2:
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Obviously for this case we have a = 0 and η = 1. That is, this is a trivial transformation

and the A system is again the radial harmonic oscillator, which is exactly path integrable.

Let us recall Figure 2, which clearly shows the transition from the Coulomb case

to the harmonic oscillator case when a′ changes from value 0 to 2.

5. Summary

In the present work we have investigated the properties of the path integral for the

promotor under the power duality transformation ∆ defined in (3)-(7).

• Feynman’s path integral is re-formulated by using the action of Hamilton’s

characteristic form in the place of the action in Hamilton’s principal form. The resulting

path integral is for the promotor rather than the propagator. The radial promotor

expressed as a path integral can be made invariant under ∆ provided the angular

momentum is not quantized.

• The power duality is found to be primarily a classical notion, which breaks down

at the level of angular quantization. The idea of quasi-duality is proposed by modifying

the angular momentum operation Lb = |η|La in an ad hoc manner as ℓa = ℓb = ℓ ∈ N0

rather than ℓb + (D − 2)/2 = |η|{ℓa + (D − 2)/2}.
• The quasi-dual radial Green functions are constructed out of the dual pair of

promotors. A formula is proposed to find the Green function for one of a dual pair by

knowing the Green function for the other.

• As the first example, the Coulomb-Hooke duality is presented in details. The

way going from the propagator for the radial harmonic oscillator to the Green function

for the radial oscillator and the Green function for the hydrogen-like atom is explicitly

shown. Although it is well-known that the energy spectrums and the eigenfunctions

can be obtained from the Green functions, the proposed duality method enables us to

determine even the normalization of the wave functions for the dual pair.

• As the second example, a family of confinement models is discussed in which a

particle is bound at the zero-energy state in a two-term power potential whose powers

are adjustable by a single real parameter a′ ∈ [0, 2]. Choosing system B to be the radial

oscillator, we have determined the effective potential for the bound system A, which

interpolates between the Coulomb system (a′ = 0) and the Hooke system (a′ = 2) and

includes the Stillinger-type potential (a′ = 2/3) as a special case. The ground state

eigenfunctions for the family of confined systems A are obtained, and the condition on

the admissible principal coupling constant is also found for the confining potential.

Appendix A. Details on the Angular Path Integration

This appendix contains details of the angular path integration performed in section

2.2. There we introduce the D dimensional unit vector, u = r/r ∈ RD on the unit

hypersphere SD−1 ⊂ RD. Let its k-th component be parameterized by angular variables
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as

u(k) =
k−1∏
i=0

sin θ(i) cos θ(k) , k = 1, 2, 3, . . . , D , (A.1)

where θ(0) = π/2, θ(D) = 0, 0 ≤ θ(D−1) ≤ 2π, and 0 ≤ θ(k) ≤ π for k = 1, 2, ..., D − 2.

Certainly u ·u =
∑D

k=1 u
(k)u(k) = 1. The element of solid angle subtended by the surface

element of the hypersphere SD−1 is given by

dD−1Ω(u) =
D−1∏
k=1

dθ(k)
(
sin θ(k)

)D−1−k
(A.2)

which integrates to the total surface area of the hypersphere,∫
SD−1

dD−1Ω(u) =
2πD/2

Γ(D/2)
. (A.3)

Now we define uj for each rj and write the integration measure in (21) as

dDrj = rD−1
j drj d

D−1Ω(uj). (A.4)

Since (∆rj)
2 = r2j + r2j−1 − 2rjrj−1uj · uj−1 in polar variables, we can express the short

time promotor (23) as

P (rj, rj−1; τj) =

[
m

2πiℏτj

]D
2

exp

{
im

2ℏτj
(
r2j + r2j−1

)
− i

ℏ
Ujτj

}
× exp

{
mr̂2j
iℏτj

uj · uj−1

}
,

(A.5)

where Uj = U(rj) and r̂
2
j = rjrj−1. Here U(r) is the modified potential U(r) = V (r)−E.

To separate the radial variable and the angular variables mixed in the last

exponential function of (A.5) we employ the Gegenbauer expansion formula 8.534 of

table [41],

ez cosϑ =

(
2

z

)µ

Γ(µ)
∞∑
ℓ=0

(ℓ+ µ)Cµ
ℓ (cosϑ) Iℓ+µ(z) , µ ̸= 0,−1,−2, . . . , (A.6)

where Cµ
ℓ (x) is the Gegenbauer polynomial and Iℓ+µ(x) is the modified Bessel function

of first kind. For cosϑ = uj · uj−1, and µ = (D − 2)/2, we can put (A.6) into the form,

ezuj ·uj−1 = 2π

(
2π

z

)(D−2)/2 ∞∑
ℓj=0

C(D−2)/2
ℓj

(uj · uj−1) Iℓj+(D−2)/2(z) (A.7)

where C(D−2)/2
ℓ (u · u′) is the modified Gegenbauer polynomial defined by

C(D−2)/2
ℓ (u′ · u) = (2ℓ+D − 2)Γ(D/2)

2(D − 2)πD/2
C

(D−2)/2
ℓ (u′ · u) (A.8)

which obey the orthonormality relation (28). Note that the modified Gegenbauer

polynomials can be given in terms of the hyperspherical harmonics, Ym
ℓ (u), satisfying

the orthonormality relations,∫
dD−1Ω(u) Ym∗

ℓ (u)Ym′

ℓ′ (u) = δℓ,ℓ′δm,m′ .
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Namely,

C(D−2)/2
ℓ (u′′ · u′) =

M∑
m=1

Ym∗

ℓ (u′′) Ym
ℓ (u′)

where M = (2ℓ + D − 2)(ℓ + D − 3)!/[ℓ!(D − 2)!]. See, e.g., ref. [46]. Inserting

z = mr̂2j/(iℏτj) into (A.7) and using the series expansion (A.7) in (A.5), we obtain

(26).

Appendix B. On the Approximation of the Radial Short Time Promotor

For the purpose of comparison between the short time action and the classical action,

we wish to bring the contribution from the modified Bessel function in the radial path

integral (27) into the exponential form by utilizing the asymptotic behavior of the

modified Bessel function for large |z|,

Iµ(z) ∼
1√
2πz

{
ez

∞∑
k=0

(−1)k
(µ, k)

(2z)k
+ e−ze±iπ(µ+1/2)

∞∑
k=0

(µ, k)

(2z)k

}
, (B.1)

where (µ, k) = Γ(µ + k + 1/2)/[k!Γ(µ − k + 1/2)], and the + sign in the second term

is for −π < Arg z < 3π/2 and the − sign is for −3π/2 < Arg z < π/2. The first term

dominates if Re z > 0.

For the convergence of the Feynman measure, a couple of simple tricks have been

proposed. Feynman’s choice [2] is that the Planck constant has a small negative part;

Cameron [48] assumed that the mass m has a small positive part. Another common

choice is to apply Wick rotation from a real time to an imaginary time, i.e., t→ −it. See

also a nice summary on this matter by Klauder [49]. Under any one of the above choices,

Re z > 0 for z = mr̂2j/(iℏτj). Since |z| is large (because τj is small), the modified Bessel

function IL(z) with L = ℓ+(D−2)/2, contained in the short time radial promotor (27),

may be approximated by

IL

(
mr̂2j
iℏτj

)
=̇

(
iℏτj

2πmr̂2j

)1/2

exp

{
m

iℏτj
r̂2j −

i

ℏ

(
L2 − 1

4

)
ℏ2

2mr̂2j
τj

}
. (B.2)

The symbol
.
= used here signifies the approximate equality valid in a time-sliced path

integral [37]. This then directly leads us to the radial short time promotor (31).
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[40] M. Böhm and G. Junker, Path Integration Over Compact and Noncompact Rotation Groups, J.

Math. Phys. 28 (1987) 1978–1994.

[41] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 8. edition, (Academic

Press, 2014).

[42] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and Quantum Mechanics, Phys. Rep. 251

(1995) 267–385.

[43] G. Junker, Supersymmetric Methods in Quantum, Statistical and Solid State Physics, (IOP

Publishing, Bristol, 2019).

[44] F.H. Stillinger, Solution of a quantum mechanical eigenvalue problem with long range potentials,

J. Math. Phys. 20 (1979) 1891–1895.

[45] A.M. Ishkhanyan and V.P. Krainov, Conditionally exactly solvable Dirac potential, including x1/3

pseudoscalar interaction, Phys. Scr. 98 (2023) 075229 (9pp).

[46] J.S. Avery, Harmonic polynomials, hyperspherical harmonics, and atomic spectra, J. Comp. App.

Math. 233 (2010) 1366–1379.

[47] S.F. Edwards and Y.V. Gulyaev, Path Integrals in Polar Co-ordinates , Proc. Roy. Soc. (London)

A279 (1964) 229–235.

[48] R.H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J.

Math. and Phys. 39 (1960) 126–140.

[49] J.R. Klauder, The Feynman path integral: An historical slice, in J. Arafune, A. Arai, M. Kobayashi,

K. Nakamura, T. Nakamura, I. Ojima, N. Sakai, A. Tonomura and K. Watanabe eds., A Garden

of Quanta: Essays in Honor of Hiroshi Ezawa, (World Scientific, Singapore, 2003) p. 55–76.

[50] G. Junker, Remarks on the local time rescaling in path integrals, J. Phys. A 23 (1990) L881–L884.

[51] L. Hostler, Coulomb Green’s Functions and the Furry Approximation, J. Math. Phys. 5 (1964)

591–611.


